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Microscopic Modes in a Fermi Superfluid. 
I. Linearized Kinetic Equations 
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This is the first of two papers in which microscopic expressions for the amplitudes 
and dispersion relations for hydrodynamic modes in an isotropic Fermi superfluid 
are derived. In this first paper we derive closed, decoupled, liuearized kinetic 
equations for the bogolon spin density and total density in a Fermi superfluid with 
fluctuating superfluid velocity, and we discuss the form of the hydrodynamic 
equations that result from these equations. 
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1. INTRODUCTION 

Hydrodynamic modes characterize the low-frequency, long-wavelength be- 
havior of macroscopic systems. They may originate either from collisional 
invariants or broken symmetries in a system. In the first case, hydrodynamic 
behavior results because collisions cannot smooth out inhomogeneities in the 
densities ofcollisional invariants. Such quantities must be transported across 
the fluid to achieve equilibrium. Hydrodynamic behavior also arises when 
symmetries are broken at a phase transition. This can happen when 
fluctuations in some quantity (such as spin orientation in a magnetic crystal or 
the phase of the macroscopic wave function in a superconductor) become 
correlated over infinitely long distances. The equilibrium state is then 
characterized by an additional thermodynamic variable, the order parameter. 
It may happen that inhomogeneities in a given order parameter decay very 
slowly because collisions cannot destroy them. Then, information about the 
inhomogeneity must be transmitted from one part of the fluid to another, and 
inhomogeneities in the order parameter behave very much like inhomo- 
geneities in the densities of conserved quantities. 
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One example of a system which contains both types of hydrodynamic 
modes is a Fermi superfluid. In this system, fermions form bound pairs which 
condense into a single quantum state. This condensed phase may be 
characterized by a macroscopic wave function. If the phase of this wave 
function varies in space and time, then a new hydrodynamic equation results 
for the velocity of the condensed phase (superfluid velocity). The condensed 
phase will accelerate if there is a gradient in the chemical potential. However, 
gradients in the chemical potential are related to gradients in the pressure and 
temperature via the Gibbs-Duheim equation. Since pressure and temperature 
involve collisional invariants, spatial variations in the superfluid velocity 
decay via transport processes. 

If one wishes to obtain the dispersion relations for the hydrodynamic 
modes in a system, the traditional method is to find the normal mode 
frequencies of the linear hydrodynamic equations. The normal mode 
frequencies will depend on various equilibrium response functions and the 
transport coefficients. One must then compute the response functions using a 
microscopic theory and compute the transport coefficients using Chapman- 
Enskog theory, in order to obtain microscopic expressions for the dispersion 
relations. However, it has been shown by R~sibois (1) (for the case of classical 
systems) and by the author ~2) (for the case of normal Fermi liquids) that 
microscopic expressions for the dispersion relations and amplitudes of 
hydrodynamic modes can be obtained directly from the linearized kinetic 
equation by using perturbation theory. Furthermore, by equating the 
microscopic dispersion relations to the macroscopic dispersion relations 
obtained from the hydrodynamic equations, one can also obtain microscopic 
expressions for the transport coefficients. This method focuses on the kinetic 
equation itself and not on the hydrodynamic equations, as does the 
Chapman-Enskog approach, and is very sensitive to the detailed properties of 
the kinetic equation. 

The microscopic mode theory has not yet been applied to a system in 
which part of the hydrodynamic behavior comes from a broken symmetry. 
But as we shall show, it can be used for such systems and gives rise to the 
dispersion relations for the modes due to broken symmetry in a very 
interesting way. In order to keep our calculations as simple as possible, we will 
discuss the hydrodynamic behavior of a Fermi superfluid whose dynamics is 
given by the Gor'kov Hamiltonian. The kinetic equation we shall use can be 
derived by a very elegant method due to Peletminskii and YatsenkoJ 3) This 
method was first applied to Fermi superfluids by Galaiko, (*) who derived the 
kinetic equations for a homogeneous Fermi superfluid, using the Gor'kov 
model. Thus, Galaiko's equations describe a system with spherical, spinless 
pairs. The work of Galaiko was later generalized to the case of an 
inhomogeneous system by Shumeiko, ~5) who then used a Chapman-Enskog 
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type of approach to derive expressions for transport coefficients. The analysis 
of Galaiko and Shumeiko is not useful when one wishes to derive the 
microscopic modes directly from the kinetic equation. The kinetic equation 
must contain information about the mode due to broken gauge symmetry; 
and it must be closed. An analysis which does lead to closure of the kinetic 
equation has been given by Betbeder-Matibet and Nozi6res (6) for a collision- 
less Fermi superfluid in the presence of a spatially varying external field. We 
shall follow their approach here. 

One interesting feature of a Fermi superfluid is that the hydrodynamics 
cannot be discussed in terms of particle parameters, but must be discussed in 
terms of the basic excitations, which we call bogolons. It is the properties of 
bogolons that are conserved during collisions, and not particles. In this first 
paper we will derive the kinetic equations for both the bogolon spin density 
and the total bogolon density, and we will derive and discuss the properties of 
the collision operators associated with each of these equations. The collision 
operators are the key to the hydrodynamic behavior in a system. Although we 
have tried to make these papers self-contained, we shall focus on those aspects 
of the derivation that are important for understanding the physics involved or 
the detailed form of the equations. 

We shall begin in Section 2 with a discussion of the basic model, and we 
shall obtain an expression for the kinetic "matrix" which describes particle 
propagation in the lab frame in terms of particle Wigner functions and pair 
densities referred to the superfluid rest frame. In Section 3, we shall linearize 
the kinetic matrix and transform it to a form which describes bogolon 
propagation. Using the method of Betbeder-Matibet and Nozi6res, we can 
then write the bogolon kinetic equations in scalar form and to a large extent 
(but not completely) close them. In Section 4, we derive an expression for the 
linearized bogolon collision integral and show that the bogolon kinetic 
equations decouple into two kinetic equations, one for the bogolon spin 
density and another for the total bogolon density. The collision operator for 
the total bogolon density conserves bogolon momentum and energy, thus 
leading to four hydrodynamic equations (no continuity equation). The 
collision operator for the bogolon spin density only conserves a constant, thus 
leading to the bogolon spin diffusion equation. For a system described by 
these kinetic equations, bogolon number is not conserved. 

In order to close the kinetic equations, in Section 5 the macroscopic phase 
is determined in such a way as to ensure particle conservation. This is now a 
standard procedure and completely closes the kinetic equation. Finally, in 
Section 6, for completeness and for later use, we shall derive the standard 
linearized two-fluid hydrodynamic equations from the kinetic equations, and 
discuss the form of the hydrodynamic modes obtained from the linearized 
hydrodynamic equations. 
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In a subsequent paper we shall derive microscopic expressions for the 
hydrodynamic modes directly from the kinetic equations, using perturbation 
theory. 

2. K I N E T I C  E Q U A T I O N  

Let us consider a Fermi system whose dynamics is governed by a 
Hamiltonian of the form 

/~ = ~ dr ~ + ( r )  V2 _ ~o ~ ( r )  
a= ~,,t 

ffdr, dr z V(Ir a --r21)~+(rl)*+ +(r2)~,(r2)W,(rl) (2.1) + 

Only particles with antiparallel spin interact. We assume the interaction is 
spherically symmetric (we will specialize to the Gor 'kov case later). The 
quantities ~ + (r) and ~r are the field operators for particles of spin v, and 
/~o is the chemical potential of the equilibrium system. The field operators 
obey fermion antieommutation relations. 

The density operator for the system is governed by the equation of 
motion 

8fi/~?t = - (gh)[/-}, fi(t)] (2.2) 

We introduce a one-body reduced density matrix ~7(rl, re) , which obeys the 
equation of motion 

8~7(r~ ,8tr2, t) Tr 8f)/Ot ~(r , ,  r2) = ~ Tr/3(t) [H, | r2)] (2.3) 

where 

and 

.~(rl, r2, t) = (~)(rx, r2)), = Tr ~(t) ~)(rl, r2) 

~)(r~ r2) = (qS~(rl)~T+(r2) ~(rl)CP*(rz) 

' \~++(r l )qJ+(r2)  R**+(rl)qJl(r2)J 

(2.4) 

(Note that a bar over a function denotes a 2 x 2 matrix. A caret denotes an 
operator.) The field operators ~ ( r )  and ~ +  (r) refer to the lab frame. We can 
transform to a frame in which there is no superfluid velocity by performing a 
gauge transformation. Thus, we write the field operators in the form 

~ ( r )  = {exp[i(b(r)])t)~(r), ~ + ( r )  = {exp[-i4~(r)]}:t)o+(r) (2.6) 

(2.5) 
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where the field operators ~ ( r )  and ~ + (r) refer to the superfluid rest frame. 
The superfluid velocity is defined by 

v,(r) -- (h/m) Vr( ~ (2.7) 

For simplicity, we assume that the phase is independent of spin. We now can 
rewrite the Hamiltonian in the form 

/~ = / t o  + 12 (2.8) 

where 

and 

(2.9) 

where 
(. 

F,(r) = j d r '  V(lr - r'[)(tP~ + ( r ' )~ ( r ' ) )  (2.12) 

? 
F~(r) = - 3  dr' V([r - r'[)(~t(r')Ud, +(r')) (2.13) 

A(r,, r2) = V(lr, - r2[)(~(rx)tP~(r2)) (2.14) 

A + (rl,  r2) = V(Irl - r21) (~  + (rl)tF, + (r2)) (2.15) 

The mean field operator 0 contains all possible ways of averaging the field 
operators in the interaction term in Eq. (2.1) in pairs. The functions F~(r) 
describe the change in the energy of particles due to their interaction with the 
background medium. The functions A(r~, r2) and A + (rl, r2) are only nonzero 
if the gauge symmetry of the state describing the system is broken. That is, if 
the Fermi system is in a superfluid state. 

Before deriving the kinetic equation it is useful to introduce the operator 

= ~ d r l  dr2 V(Jrl - r2f)~T + ( r O ~  +(rz)~(r2)~,,(rl) - 0 (2.10) 

The operator 0 includes mean field corrections to the free motion of the 
particles and is defined by 

U =  ~ f d r  F~( r )~+( r ) t~ ( r ) -  f f d r l  dr2 A+(rl, r2)~(r l ) t~(r2)  
d JJ  

-- l ' t 'drl  dr 2 A(rl, r2)~T +(rl)~ +(r2) (2.11) 
d d  
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~(r 1 , r2): , whose expectation value is the one-body reduced density matrix in 
the superfluid rest frame 

~ r l ,  r2) - f  ~*(rl)l~$ + (r2) ~T (rl)~'~ (r2) ~ (2.16) 

It is also useful to write the equation of motion of this operator under the 
action of the free Hamiltonian/]0.  If we start with the equation 

ih O~)(rx, rz)/Ot = - [/-)o, ~D(r~, r2)] (2.17) 

we can separate out the phase and obtain the following equations for elements 
of the matrix O(rl, r2): 

ih 001x(rx, r2) 0t - c~+(rl)011(rl' r2) - et--(rz)011(rl' r2) 

f - dr [A(rl, r)O21(r, r2) - 01a(rl, r)A+(r, r2)] 

(2.17a) 

ih Ot - Et +(rl)Ol2(rl' r2) + E++(r2)Olz(rl' r2) 

- f d r  [A(rl, r)O22(rl, r2) - 0a 1(rl, r)A(r, rz)] 
*J 

(2.17b) 

ih ~02a (rl ' r2) c~t - E+-(r,)02 l(r , , rz) - el,-(r2)021(r,, r2) 

- [ d r  [A+(rl,  r)011(r , r2) -- 0:2(rl, r)A+(r, r2)] 
~d 

(2.17c) 

ih ~022(r1' r2) r - -c*- ( r0022(r t '  r2) + E++(rz)0zz(r" r2) 

- ~dr [A+(rl,  r)~az(r, rz) -- 0zl(rl, r)z~(r, r2)] 
Id 

(2.17d) 

where 

~ _ ~o (2.18) Ea+(r  ) = 12m r - i h  vr + rnvs(r ) ]  2 + F ~ ( r )  + fi ~ -  

Oq is the ijth element of the operator matrix ~. Now that we have The operator 
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obtained the equations of motion for 0(r~, r2), it is convenient to change to the 
momentum representation. We can change from field operators to particle 
creation and annihilation operators in the usual manner 

~(r) = 1 ~ [exp(ik. r)]t~k,~, 

If we use the convention 

1 
~ + (r) = F ~ [exp( - ik. r)]t~,~ 

(2.19) 

8(kl , k2) = f f drl dr2 [exp(-ikl .rl) exp(ik2 .r2)]G(rl , r2) (2.20) 

we obtain the following matrix: 

ff(k 1 k2) = { C~k"*dk+'* C~k~''Cl-k~'; "] (2.21) 

We are now ready to write the kinetic equation. 
The major assumption in the work of Peletminskii and Yatsenko ~3) is that 

after a long time, the density matrix ~5(t) becomes a functional only of the one- 
body reduced density matrix. That is, it can be written in the form 

~(t) = fi{ff, t} + ~'{r -t/~~ (2.22) 

where p{~, t} is a functional only of  the matrix O. This idea was originally due 
to Bogoliubov and used by him to study classical systems. The quantity fi(0) is 
the density operator at time t = 0, and ~0 is some relaxation time. After a time 
much longer than ~o, we can describe the state of  the system by r O,, t}. For a 
superfluid system, fi{ff, t} has broken gauge symmetry. Furthermore, because 
fi{~, t} depends only on ff and therefore has the form of a generalized 
Gaussian, we can use Wick's theorem to evaluate the expectation value of  
products of creation and annihilation operators. The actual derivation of  the 
kinetic equation is somewhat involved but straightforward. The method is 
discussed in Refs. 4 and 5, and we will not repeat the calculations here. The 
kinetic equation obtained by this method takes the form 

ih~(kx ,k2, t )  1 ~ [  c~t -- -~ . ((k~, ka)rT(k., k2, t) - rT(k~, ka, t){(k~, k2) 

h ~o ds e 6s Tr{tS{~, t}[ IT'(s), [ P ,  0~kl, k2)33} (2.23) 
o0 
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where 

ri(kl, k2, t) = (~(k I , k2)) ,  (2.24) 

{ E~-)(kl, k2) - A ( k l ,  k2) "] 
~(kl, k2) = \ -  A+(k~, k2) - e] +)(kl, k2)/' (2.25) 

and 

1 
e(~-+)(k~ ' k2) = 2mm [h2k~2 6kl'k2 -]- mh(kl + k2) "vs(kl - -  k2) q- mv~2(k~ - k2)] 

63~b(k I - k2) 
+ F~(k~ - k2) + h at (2.26) 

The Fourier  t ransform of  the superfluid velocity v~(k~ - k2) is defined by 

vs(k~ - k2) = t'dr { e x p [ -  i(k I - k2).rJ}vs(r ) (2.27) 
! qa 

and a similar convent ion is used for other  quantities in Eq. (2.26), The 
interaction opera tor  17' in Eq. (3.23) does not  include the mean field terms. 
Thus, 

? ,  1 
= - -  k 4 ) a k t , t a k 2 , ~ a _ k ~ , ~ a k 3 , T  (2.28) V ~ V ( k l ' "  ~+ ^+ ^ ^ 

k t , . . . , k4  

where 

and 

V(kl ..... k4) = 6(kl - k2 + k4 - k3)I(kl  - k 3 )  (2.29) 

(, 
I (k  1 - k3) = J a r  { e x p [ - i r .  (k 1 - k3)]} V(Irl) (2.30) 

The first terms on the right-hand side of  Eq. (2.23) are streaming terms 
and will be recognized as the Fourier  t ransforms of  Eqs. (2.17a)-(2.17d). The 
last term on the r ight-hand side is the collision integral. We notice that  the 
collision integral now depends only on 17" and does not  contain contr ibut ions 
f rom the mean field terms. These cancel identically when the trace is taken, so 
we have not  included them in Eq. (2.23). The opera tor  l?'(s) which appears in 
the collision integral is defined by 

lT"(s) = e x p ( i ~ o s / h  ) V '  exp( - iJ~fos/h) (2.31) 

where 

= E k2) ik2 (2.32) 
k l , k 2  
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and A~ and A~2 are column and row vectors and are defined by 

A~ = ~k~ T,'a_~,~ and Ak={ fik'~ "~ (2.33) \ -k,+J 
Equation (2.23) is the kinetic equation of a Fermi superfluid in which only 
antiparallel spin particles interact. In order to make contact with a classical 
kinetic equation, we can rewrite ~i(kx, k2, t) in terms of center-of-mass 
momentum K = �89 a + kz) and relative momentum q = k~ - k 2 . If we now 
Fourier transform the q dependence of ri(k I , k2, t), we find 

r~(K, R, t) = ~ [exp(iq.R)]n K + K - (2.34) 
q 

r~(K, R, t) is the Wigner function for the system. In the classical limit the 
diagonal elements become proportional to the single-particle distribution 
function, and the diagonal elements in Eq. (2.23) reduce to the Boltzmann 
equation. 

3. L I N E A R I Z E D  K INET IC  E Q U A T I O N  

We will now linearize the kinetic equation following closely an analysis 
by Betbeder-Matibet and Nozi6res. ~6) This method provides a means of 
closing the kinetic equation when superfluid flow is present. In order to keep 
our discussion as simple as possible, we will specialize our Hamiltonian to the 
Gor'kov (7) model. That is, we let 

V([rz - r2[) = 9 6(rl - r2) (3.1) 

where g is a small, negative coupling constant which is only nonzero in a small 
interval about the Fermi surface. With this interaction the functions 
appearing in Eq. (2.25) take the form 

rr(q) = V ~ n22(K, q) (3.2) 

Fs(q) = - ~  ~ nix(K, q) (3.3) 

9 A(kx, k2) = A(q) = ~ n12(K, q) (3.4) 

a ~ n~l(K, q) (3.5) zX+(k,, k2) = A+(q) = ~ 

I(kl - k3) = 9 (3.6) 
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We have used the notation nij(K + ~q, K -  ~ t i )=  nij(K, q). The quantities 
A(q) and A § (q) are the nonequilibrium gap functions. They vary in position 
but are independent of momentum. 

Let us now linearize the kinetic equation about absolute equilibrium. We 
will write 

and 

where 

~(ka, k2) = go(k~) 6kl ,k  2 "q- 6g(kl, k2) (3.7) 

r~(kl, k2) = no(k1) ~kl,k2 -I- 6r i (kl ,  k2) (3.8) 

~o(k ) = ( ~k, - A )  (3.9) 
\ - 6  - ~k 

is the equilibrium energy matrix, {k = h2k2/2m - 12, 12 = 12o + �89 and A* 
= - A .  We have assumed that the equilibrium densities of spin-i" and spin-$ 
particles are equal, i:e., n r = n, = n. We also have assumed that at equilibrium 
there is no superfluid velocity (a constant finite superfluid velocity is also an 
equilibrium state). The equilibrium particle distribution function r~o(kl) is 
defined by 

rio(kx) = �89 go(k0(E~ -~ tanh(�89176 (3.10) 

where I-is the 2 x 2 unit matrix, and 

Ek ~ = (~k 2 + IA[2) 1/2 (3.11) 

is the equilibrium bogolon energy. The linearized kinetic equation now takes 
the form 

ih 0&i(k~, k2)/St 

= (0(kx) &~(kl, k2) - 6r~(kt, k2)(o(k2) 

+ c$g(k I , k2)no(k2) - t~o(kl) c$g(kl, k2) + Clin(~(k I , k2)) 
(3.12) 

where Ctin(0(kl, k2) ) denotes the linearized collision integral. 
The properties of a Fermi superfluid are best described in terms of the 

collective modes, called bogolons, rather than particles. We can transform to a 
description in terms ofbogolons via a unitary transformation (the Bogoliubov 
transformation C8)) which diagonalizes the energy matrix in Eq. (3.9). The 
resulting bogolon kinetic equation can be written as a set of scalar equations, 
and the collision integral contains information about collisions between 
bogolons rather than particles. Let us first introduce the following transfor- 
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mation from particle operators ~k,~ and ~+k,~ to bogolon operators /~k,~ and 
/)~,~. We write 

= U +{/ k,t ~ (3.13) k ~+ 

where 

( - )  Uk+= uk (3.14) 
Uk ~ Uk ~r 

(the asterisk indicates complex conjugation) and the elements of the 
transformation matrix are defined by 

b/k/.) k • 1 A / E k  0, UkUk g~ = �89 0 (3 .15a )  

u k = [�89 + ~k/Ek~ (3 .15b)  

and 

Iv~l = ff~(1 - ~ / E k ~  1/2 ( 3 . 1 5 c )  

As usual, we have assumed that u h is real. The transformation matrix is 
unitary : 

U k + U k  ~--- UkUk + = [- (3 .16)  

This transformation diagonalizes the energy matrix 

< ~ /~~ = --Ek ~ = Uk+gkOuk (3.17) 

and enables us to transform to the one-body reduced density matrix for 

bogolons (~(kl, kz))t, where 

Q ^ ^+ " ' t 
bkl ,+bk2,+ /)kl + / ~ - k 2 -  

- ( 3 . 1 8 )  
~ ( k l ,  k2)  = g ~ - ~ ( k l ,  k 2 ) g k  2 ^+ ^+ ~+ ^ b-kl,-bk2,+ b-kl,-b-k2 - / 

The particle distribution matrix r~ ~ transforms to the bogolon distribution 
matrix ~k ~ 

~?k ~ = Ok+r~kOOk = �89 + fa tanh(~Ek~ (3.19) 

where o) 
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The deviation from equilibrium of the bogolon distribution is given by 

fi~(k 1 , k 2 ,  t) = U~, firi(kl, k2 ,  t)Uk2 (3.20) 

and the energy corrections are given by 

? iF (k1 ,  k2 ,  t') = U~- fig(ka, ke)/Jk~ (3.21) 

We now can transform the kinetic equation (3.11) to a bogolon kinetic 
equation 

ih 0fir(k1, k 2, t)/dt 

- -  s  fi~(kl, k2, t) - fi~(k~, k2, 0Co(k2) 

+ fiE(k1, k2, t)~70(k2) - fo(kx) fiE(k1, k2, t) + Clin(~'(kl, k2) ) 
(3.22) 

In order to make contact with physical quantities, we transform to center-of- 
mass momentum K = �89 + k2)  and relative momentum q = k 1 - k 2 . As we 
saw at the end of Section 2, q is the wave vector for spatial disturbances. 

Since we are interested in obtaining the hydrodynamic modes, we only 
need to retain contributions for small q (long wavelength). Thus we expand 
the streaming terms in powers o fq  and retain lowest order terms. The kinetic 
equation then takes the form 

ih ~fi~(K, q, t)/Ot 

= EK~ fiT(K, q, t) - fir(K, q, 073-1 

+ 0k~ K, q, 0?3 - ?3 fiE(K, q, t)] 

1 h 2 ~K [?3 fir(K, q, t) - fi~(K, q, t)?33 + mK'quoo 
1 h 2 K ~ 
2 m "q ~ (~O~~176 q' 0?3 + ?3 fiE(K, q, t)] 

+ C~in(~( K + ~1, K - ~1)) (3.23) 

where 

0~ ~ = +�89 tanh(flEK ~ (3.24) 

It is useful to write the various elements of the matrix equation (3.22) 
explicitly: 
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ih 6365v11(K' q' t) 

ih 

h 2 ~ 
c3t m K ' q  E~~ ~ bvll(K'  q' t) 

he K ~K ~0~ ~ 
+ m "q ~ o  OEKO 6Ell(K,  q, t) = C,i.(bK+q/2,+b~_q/2,+) 

06v22(K , q, t) h 2 ~r 
c3t + --rn K .q  --E~ 0 3v22(K, q, t) 

h2 ~k (30~ ~ 
- - - K . q  6E22(K, q, t) = CIi~(6+K q/2 ~ ~+q/2 ) 

m EK ~ ~ - - ' -  - ' -  

(3.25a) 

(3.25b) 

ih ~3v12(K' q' t) 2EK ~ 3v12(K, q, t) + 20~ ~ 3Ex2(K, q) 
c3t 

= Clin(bK + q/2, + D_ K+ q/2,- ) (3.25c) 

ih ~6v21(K" q' t) + 2 /~  o 6v21(K ' q, t) - 20~ ~ 3E21(K, q, t) 
~t 

= Olin(b- + K- q/2,- gff- q/2,+) (3,25d) 

The quant i ty  (hK/m)~K/EK ~ which appears in Eqs. (3.25a) and (3.25b) is the 
bogolon velocity. We can now begin the process of  obtaining closed equations 
for the bogolon distribution functions 3v22(K, q, t) and 6Vl~(K, q, t). 

Let us first note from Eqs. (3.25c) and (3.25d) that  for slowly varying 
processes we can write 

~v(12)(K, q, t) - -  (Or,~ ~ 6E~I2)(K, q, t) + small corrections (3.26) 
(21) (21) 

Let us next look more closely at self-consistent field corrections. From Eqs. 
(2.25), (3.7), and (3.9), we can write 

( -hK-v~(q, t) + F~(q, t) + h ~49(q, t)/~t - h A ( q ,  t) 

3~(K, q, t) = \ - 6 A + ( q ,  t) -hK-v~(q, t) - F~(q, t) - h CqS(q, t)/Ctf 
(3.27) 

Then, using the properties of  the Bogoliubov transformation,  0~ +, and Eqs. 
(3.2) and (3.3), it is not  difficult to show that  

3El l (K,  q, t) + ~SEz2(K, q, t) 

= 9 T , ~ [ 3 n 2 2 ( - K ' , q , t  ) + 3n11(K' ,q, t )3 
V K, 

ff K~ " [Ov22(--K t, q, l) + I~I,'ll(K' , q, t)]  =? (3.28) 
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s  , q, t) - 6Ell(K, q, t) 

= 2hK-vs( q, t) - 2h ~ E~ ~ O4~(q, t)/Ot 

1 
E,O [a* 6a(q, t) + A 6A+(q, t)] 

CK # ~ [6n22(K, ' q, t) - 6n11(K' , q, t)] 
E~ ~ F" 

(3.29) 

(We have neglected terms of order v~2.) We can now write the third and fourth 
terms on the right-hand side of Eq. (3.29) in terms of bogolon distribution 
functions. Let us begin with the last term in Eq. (3.28). From Eqs. (3.4) and 
(3.5) and the Bogoliubov transformation, we can write 

6 .6A(q ,  t) + 6 66*(q, t) 

g 
= ~ [A* 6nlz(k, q, t) + A &z~(k, q, t)] 

[A* c~v12(K, q, t) + A ~v21(K, q, t)] 

+ ~ o  [6V22(K, q, t) - 6Vll(K, q, t)]} (3.30) 

where Ao 2 = A*A. But from Eq. (3.26) we find that 

A* ~v12(K , q, t) + A 6v21(K, q, t) 

0K~ [A* 6E12(K, q, t) + A 6E21(K, q, t)] 
= EKo 

oK ~ fAo 2 r 2h ~4,~q, t ) ]  
= EK o ]~-616F~(q, t) + 6r+(q, t) + Ot J 

+ ~ o  [A 6A(q, t) + A cSA + (q, t)] (3.31) 
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Combining Eqs. (3.30) and (3.31), we obtain 

A* 6A(q, t) + A 6A+(q, t) 

[ 't]l = +gV~ExOExO[~Ox 0K ~ ~Ao 2 6Ft(q, t) + 6gi( q, t) +2h 0t _iJ 

"~- ~ ~ EK OAO~2 [0Y22(K , q, t ) -  ~v 11(K, q, t)] 

, 0,o 
Ex-~ \E~0-Ko/# [ A *  3A(q, t) + A 6A+(q, t ) ]  (3.32) V 

In the term in gq. (3.32) that involves 3F~ + 6F~ + 2hOda/St the integration 
over K involves an odd function of ~x (~x is odd with respect to the Fermi 
surface) and will be of order A/EF, where EFiS the Fermi energy of the system. 
Thus, for a weakly coupled system where A << E r that term can be neglected. 
Then Eq. (3.32) takes the-form 

A* 3A(q, t) + A 3A+(q, t) 

g 1 ~i~ [3v22(K , q, t) 3vii(K, q, t)] (3.33) = +~- ;~ (T) -  ~Ex-- ~- 

where 

( ~x "]2 0xo (3.34) 

Let us now consider the last term in Eq. (3.29). Using Eq. (3.26) and the 
Bogoliubov transformation, we can write 

~nz2(K , q, t) -- gnll(K , q, t) 

__ ~K [3v22(K, q, t) -- ~Vll(K , q,/)3 
EK ~ ~. 

1 
Ex o [A* 6vx2(K, q, t) + A 3v2x(K , q, t)] 

__ ~K [3v22(K,  q, t) - -  3v11(K , q, t)] 
E~ ~ 

_ o :  

) ~ 

+ 

) 
q, t) - &~ dK', q, t)]~ 

1 ~x 0x ~ [A* 6A(q, t) + A ~$A+(q, t)] (3.35) 
Ex ~ Ex ~ Ex ~ 
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The last term in Eq. (3.35) can be neglected when Eq. (3.35) is substituted into 
(3.29) because it is odd in ~K. If we solve Eq. (3.35) for bn22 - 3nll , we find 

3 n 2 2 ( K  , q, t) - 6nil(K, q, t) 

= (1 + ffK) - 1  E ~  [6v22(K' q' t) - 3v 11(K, q, t)] 

- (1 + & ) - ' (  o,<o 04b 
~ e,< o-7 (3.36) 

where/~K is an integral operator and is defined by 

g/AoVO: 
FKg(K) : ~ \E~-O/ E~ ~g(K ' )  (3.37) 

If we now substitute Eqs. (3.36) and (3.33) into Eq. (3.29), we finally obtain 

6E22(-K, q, t) -- 3E11(K, q, t) 

= 2hK.vs(q, t) + 2hi1 + F(T)] -1 •K 0~b(q, t) 
E~ ~ 0t 

~ V [ 1 +  F(T) ] - I  ~ ~ [cSv22(-K', q, t ) -  6v~(K, q, t).] 
E~ ~ 

Ao 2 9 ~ E 3 v 2 2  ( -  K', q, t) -- 3v 1 l(K', q, t)] 
_ V z ( T ) - I  EK ~ w Ew 

(3.38) 

where 

(Ao "~2 0ko 
(3.39) 

In the term involving 6v22 ( -K,  q, t), K is a dummy variable and its sign has 
been changed by relabeling. 

Equations (3.25a), (3.25b), (3.28), and (3.38) almost constitute a closed 
set of equations for 3v 11 and 3V2z. The only problem remaining is to express 
the superfluid velocity and the time derivative of the phase in terms of these 
quantities. We shall return to this after we have studied the collision integral. 
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4. C O L L I S I O N  I N T E G R A L  

Let us now obtain an explicit expression for the collision integral. We are 
interested in the following quantity: 

i lira f_ I dseO~Tr{~{O, t}[I~'(s), ^' ^+ ^ - [ V ,  , b ~  _ ./2,JD~K + q/2,~.]] } 
I )  

(4.1) 

Let us first consider the Hamiltonian ~ which appears in the expression for 
P'(s), 

BklE(kl, kz)Bk~ (4.2) 
kz ,k2 

As we can see, this Hamiltonian is not diagonal but contains contributions 
due to bogolon pairing. It is convenient in deriving the collision integral to 
assume that spatial disturbances have one wavelength characterized by wave 
vector q. Let us now retain contributions to lowest order in q and neglect 
contributions due to bogolon pairing. Then we can write 

where 

and 

~ o  ~ Z E E~(K, q)6ff, fK,a + small corrections 
2 K 

(4.3) 

E+ (K, q) = E~ ~ - 6E~1 (K, q) (4.4) 

E_(K, q) = E~ ~ + 3E22(K , q) (4.5) 

We see that the Hamiltonian involves the bogolon energy in local equilibrium 
and not absolute equilibrium. This is just what we expect from Fermi liquid 
theory. 

We can now use Wick's theorem to evaluate Eq. (4.1). The calculation is 
somewhat tedious. The resulting expression will depend on products of 
pairwise averages (6~,~6k.a). We can linearize the collision integral by 
expanding the pairwise averages about  local equilibrium. Thus we write 

~+ ^ ~f~ q)) 
<b~.~_q/z,~b~.~+q/2.~) =f~ q)) + dP,(K, q) (4.6) 

~E~(K, q) 

where f~ , q)) is the local equilibrium distribution function 

f~ q)) = {expl-/~E~(K, q)] + 1}- '  = �89 + tanhl-/~E~(K, q)/2} (4.7) 
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If the collision integral is linearized in ~x(K, q), it takes the form 

Clin(b2K - q/2,~.baK + q/2,~) 

h 4 V  2 ~2,~3,K4 ,~,~3,~4 

x 6 [2Ex(K, q) + 22Ex~(K2, q) - ~.3E~(K3, q) - 24E~(K4, q)] 

• f~ ql)f~ q)) 

• [ 1 - f~ 3E~.3(K 3 , q))] [ 1 - ]<~ q))] 

( + + 
EK,EI<~ ) 

• [X(I)z(K, q) + X2@;,2(K2, q) - )~3dPz~(K3, q) - ).4ap~,(K,, q)] 
(4.8) 

Note that because local energy is conserved, the condition of detailed balance 
holds: 

f~ q))f~ q))[1 - f ~  q))] [1 - f~  q))] 

= [1 - Z~ q))] [l  - Z~ q))] 

• f~ q))f~ q)) (4.9) 

Let us now complete the linearization of Eq. (4.8) with respect to absolute 
equilibrium. We first introduce an expansion of the pairwise averages about 
absolute equilibrium" 

~+ 6 ~f~176 
(b~ K-q/2,X ~.K+q/2,X) =f~176 + ~EK 0 qS~(K, q) (4.10) 

where 

f~176 ) = [exp(flEK ~ + 1]-1 = �89 + tanh(flEK~ (4.11) 

If we next equate Eqs. (4.6) and (4.10), we find 

Of~176 ' "K 0f~ q)) (I)~(K, q) =f~176 ) + ~ *at ,q) (4.12) f~ q)) + - OEz(K, q) 

We now expand the local equilibrium distribution about absolute 
equilibrium, 

Of~176 rEx(K, q) (4.13) f~ q)) =f~176 + ~EK o 
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where 

and 

3E+ (K, q) = - 0 E l l ( K ,  q) 

6E_(K, q) = 3E22(K, q) 

( 4 . 1 4 )  

(4.15) 

(4.20) 

(4.21) 

Let us first note that 

0Jk ~ 
~EK0 @+(K, q, t) = - - ~ V t l ( g  , q, t) 

0& ~ 
r~E.O @_(K, q, t) = 3 v 2 2 ( - K  , q ,  t) 

Comparing Eqs. (4.12) and (4.13), we see that 

I~f~176 ~ ( K ,  q) = @~(K, q) - 6E~(K, q) (4.16) 
q)) 

If in Eq. (4.8) we retain contributions linear in deviations from absolute 
equilibrium, we obtain 

i~ng 2 
= ~IV2--~ }~ 2 s (~(K + g2  - K3 - K4) 

K2,Ks,K4 ~2,,~3,24 

x f~176176176 f~176 _fo(&,  Eo)3 

• 1 - ; &  ~ ; o E ~  ~ t  - ~ o -o ~ 
g K2 / \  EKsEK~ 

0 x E2@x~ q) + z2~;.2(k2, q) - 23~~ q) - 24a#~ (k4, q)] 

(4.17) 
where now 

Ca~ q) = ~b~(K, q) - 6E~(K, q) (4.18) 

It is useful to write the collision integral in terms of a linear collision operator 
CK,~, which is defined by the equation 

iCx,;@:~ ~ (K, q) = Cli n (/~)?K-- q/2,Z/~)K + q/2,Z) (4.19) 

As we shall see, the collision operator C~,a has a structure which enables us to 
decouple the kinetic equations for 6v~ ~ and 6vz2 into two kinetic equations, 
one for the bogolon spin density and another for the total bogolon density. 
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Then the kinetic equat ion for the total bogolon density can be written 

0f~ ~ 0h(k, q, t) 
ih 

aEK ~ c~t 

where 

h2K'q  CK 0Jk ~ H(K,  q, t) = iCk*/H(K, q, t) 
m Eg O aEK ~ 

h ( K , q , t ) = $ + ( K , q , t ) + q 5  ( - K , q , t )  

and 

H(K, q~ t) = h(K, q, t) - 3 E 2 2 ( - K  , q, t) + bE~x(K,  q; 0 

= h(K, q, t) - 2hK.L(q,  t) - 2hi1 + F(T)J  -~ ~K aq~(q, t) 
E~ ~ 0t 

+ ~ ~ [ I + F ( T ) ]  -~ ~K, ~j-o E~ ~ ~ ~ Eo ' aEo, h(K', q, 0 

Ao 0f ~ + &o ~ Z(T) -~ ~ ~ Eo ' ~ h(K', q, ,) 

The kinetic equat ion for the bogolon spin density can be written 

0J~ ~ Om(K, q, t) 

aEK ~ Ot 
ih 

where 

- hZK'q ~g c~fK~ M(K, q, t) = iCV)M(K,  q, t) 
m Ek  ~ OEK ~ 

m(K, q, t) = q~ + (K, q, t) - 4 ) - ( - K ,  q, t) 

and 

(4.22) 

(4.23) 

0 
g , ~  fK '  ,.,-, M(K, q, 0 = re(K, q, t) - ~ ~ ~ m [ ~ ,  q, t) 

The collision operators  Ck § and C)k -) are defined as follows'  

Ck + 'H(K,  q, t) 

f lng 2 

- 4 h v  ~ E E ~(K+K~+K~-I~)  K2,K3,Kq ),2,J,3,)~4 

~[J~ (~.EK 0 + ~2E~ ,~3E~ ~4E~ 
• h 

(4.24) 

(4.25) 

(4.26) 

(4.27) 

x f ~ 1 7 6 1 7 6 1 7 6  - f~176 - f~ ] 

x [H(K,  q, t) + ZzH(ZzK, q, t) - 23H()L3K3, q, t) - Z4H(Z4K4, q, t)] 
(4.28) 
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and 

s q, t) 

fll~g 2 
-4by2 Z Z a(K+K2-K3-K4) 

K2,K3,K4 ).2, ).3,2z 

x f~176176176 2)[1 - f o  (23E03)] [1 - f~176 ] 

x [M(K, q, t) + M(22K2, q, t) - M(23K 3 , q, t) - M(2,K 4, q, t)] 

(4.29) 

We now note that the collision operator Ck +~ has four eigenfunctions with 
eigenvalue zero. They are the three components of momentum K and the 
bogolon energy EK ~ 

Ck+)K = 0, Ck+)E~ ~ = 0 (4.30) 

The collision operator ~2~ -) has one eigenfunction with zero eigenvalue, a 
constant 

Ck-)A = 0 (4.31) 

where A is a constant. These facts will be useful later. We note that the kinetic 
equation for h(K, q, t) is still not closed because H(K, q, t) depends on v~ and 
O~)/&. However, we can express these quantities in terms of h(K, q, t). 

5. C L O S U R E  OF T H E  K INET IC  E Q U A T I O N  

We know from thermodynamic arguments that a gradient in the chemical 
potential can cause the superfluid to accelerate. If  we identify the time 
derivative of the phase with the chemical potential 

/~(q, t) = - h  ~34~(q, t)/& (5.1) 

then Eqs. (2.7), (2.27), and (5.1) can be used to obtain 

im ~vs( q, t)/& = q~(q, t) (5.2) 

as we expect. We see from Eq. (2.18) that this choice is consistent. Equation 
(5.2) is the usual hydrodynamic equation for the superfluid velocity. 

In superfluid hydrodynamics, it is always assumed that the total mass of 
the fluid is conserved and that there is a continuity equation for the mass 
density. As we can see from Eq. (4.29), bogolons are not conserved during 
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collisions. There is no bogolon continuity equation. Furthermore, total 
particle number is not conserved by the bogolon kinetic equations. However, 
we can impose the conservation of total particle number on the system by the 
proper choice of the chemical potential, and in so doing we close the kinetic 
equations. 

Variations in the total mass density can be written 

1 
6p(q, t) = ~ [6nz2(k, q, t) - 6n~(k, q, t)] 

1 , k  

~k ~fk ~ h(k, q, t) + - -  #(q, t) (5.3) = [1 + F (T) ] - I  

The total momentum density operator can be written 

J = ~ f dr 'P~+ (r)(-ih Vr)CP~(r) (5.4) 

From this, we derive the result 

1 
J(q, t) = pv~ + ~ hk[n22(-k,  q, t) - nil(k, q, t)] 

= pv~ + P ~  T hk h(k, q, t) (5.5) 
01Zk 

where p is the total particle density. The continuity equation is given by 

i cap(q, O/cat = q. J(q, t) (5.6) 

If we now require that Eq. (5.6) be satisfied for our fluid, we find 

�9 ca#(q, t) -gi 1 ~k cafk ~ cah(k, q, t) 
' cat - 2 F ~ )  V ~ Ek ~ CaEk ~ cat 

[1 + F(r)]g [ 2 r ( T )  V1 -- ~caf'~ h(k, q, t)] + pq-v~(q, t) + ~ hq-k 

(5.7) 
and if we use the kinetic equation (4.22) we obtain 

�9 ca/~(q, t) g 1 ~ h q ' k  cafk~ 
t cat - 2F(T) V . .  m caEk 0 

• { ( ~ ) 2 H ( k , q , t ) - [ l  + F(T)]h(k,q,t)t 

[1 + F(T)]g 
-~ pq .v~(q, t) 2r(r) 

g 1 1 V ~k . (+) 
2F(T) h V~k E~ - ~ C k  H(k, q, t) 

(5.8) 
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Let us now Fourier transform the time dependence of Eq. (5.8). We write 

'L /~(q, t) = ~ do) e-i'~ co) (5.9) 

with similar expressions for other time-dependent variables. We then can use 
Eqs. (4.24), (5.2), and (5.8) to solve for/~(q, co). We will assume that q lies along 
the z axis. Then the expression for/~(q, co) takes the following form: 

I q 2 ] - , (  q,q 1 hk z Cgfk~ 
/~(q'co)= F(T)+ R(T)CO 23 \ CO2V~ m 8Ek ~ 

~k 
[ i  + F(T)] tk(k  , q, t) 

1 9 1 ~k ,~ 
co 2hF(T) l/ ~ Ek ~ iC(f)h(k, q, t)) (5.10) 

where 

R(T) = - 9  ~m p El + F(T)] + ~ 8EkO ] (5.11) 

Note that only the first two terms in Eq. (4.24) contribute to Eq. (5.8). The 
other terms go out when the angle integrations are performed. We now have 
completely closed the kinetic equations. It is important to note that the term 
depending on the collision operator is imaginary. As we shall see in a 
subsequent paper, this term, unless it can be omitted, destroys the longitudinal 
mode. 

6. HYDRODYNAMIC EQUATIONS 

If we note that the collision operators C[ -+) are self-adjoint, that is, 

_ = 1 ~h(k)C~.)g(k ) (6.1) 1 ~g(k)C(k_+)h(k ) V k V k  

it is a simple matter to derive the hydrodynamic equations. Let us begin with 
the equation for the spin density. 

6.1. Spin Dens i ty  

The collision operator C'(k -) has only one collisional invariant, a constant, 
and therefore we can derive one hydrodynamic equation from it. The spin 
density is defined by 

l 8fk ~ 
s(q, t) = V E m(k, q, t) (6.2) 
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If we sum over momentum k in Eq. (4.25) and use Eqs. (4.31) and (6.1), we 
obtain 

i~s (q ,  t)/Ot = q'Js(q, t) (6.3) 

where Js(q, t) is the spin current 

1 hk ~k (?Jk ~ M(k,  q, t) (6.4) 
Js(q, t) = ~ k~ ~ Ek 0 ~EkO 

According to Fick's law, in the linear regime the spin current is related to the 
coefficient of spin diffusion D according to the equation 

Js(q, t) = -iDqs(q, t) (6.5) 

There is no convective contribution, because s(q, t) ~ 0 at equilibrium. If we 
combine Eqs. (6.3) and (6.5) and Fourier transform the time dependence [cf. 
Eq. (5.9)], we obtain 

co = - i D q  2 (6.6) 

Thus spin waves in a simple Fermi superfluid are completely damped. 

6.2. Total  Density 

We already have two hydrodynamic equations for quantities dependent 
on the total bogolon density, namely the continuity equation (5.6) and the 
equation for the superftuid velocity (5.2). We can obtain four more 
hydrodynamic equations from the kinetic equation for the total bogolon 
density (4.22). Let us multiply Eq. (4.22) by the momentum k and sum over k. 
We find 

i - -  - -  ~,  q, = - -  kk - -  H(k ,  q, t) (6.7) 
~t V k e lk  V~k m Ek ~ ~?Ek ~ 

[cf. Eqs. (4.30) and (5.1)]. From Eqs. (5,5), (5.2), and (6.7), we obtain the 
following hydrodynamic equation for the momentum density J(q, t): 

i aJ(q, t)/Ot = q.fi(q, t) (6.8) 

where II(q, t) is the pressure tensor, 

1 ~ h 2 ~k •fk 0 
I~(q, t) = ~ ~ ~ kk Ek o ~?Ek o H(k ,  q, t) + P~m/~(q' t)~ (6.9) 

(~  is the unit tensor). Note that since the total mass density p can be written 

P = Ps + P, (6.10) 
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and the momentum current J can be written 

J = p~v s + p,v, (6.11) 

where p~ and p, are the superfluid and normal fluid densities and v, is the 
normal fluid velocity in the lab frame, we find from Eq. (6.5) that 

c3fkO h(k, q, t) (6.12) 

This is the normal fluid momentum density in the superfluid rest frame. 
In the linear regime the total energy can be written as a functional of the 

bogolon distribution and the total density. Thus, any local changes in the 
internal energy density of the system can be written 

1 
6U(q, t) = - ~  Ek~ q, t) - c5v~1 (k, q, t)] + /~ 6p(q, t) (6.13) 

From thermodynamics, we know that 

dU = T d S  + p dp (6.14) 

where S is the total entropy per unit volume and T is the temperature. Thus, 
variations in the entropy density can be written 

1 1 
6S(q, t) = f ~ ~ Ek~ q, t) - 6Vl a(k, q, t)] (6.15) 

Let us now multiply Eq. (4.22) by the energy Ek ~ and integrate over k. If we use 
Eqs. (4.30) and (6.1), we find 

i •6S(q, t)/Ot = q.jO(q, t) (6.16) 

where JQ(q, t) is the entropy current and is defined by 

1 1 _  ohk ~k (3fk ~ 
= L Ek - -  H(k, q, t) (6.17) 

JQ(q, t) T V k m Ek ~ 0Ek ~ 

Equations (5.6), (5.2), (6.8), and (6.16) constitute the entire set of hy- 
drodynamic equations for quantities involving total density in a Fermi 
superfluid. We now can express the currents in terms of convection 
contributions and transport coefficients, and we can write an equation for the 
hydrodynamic normal mode frequencies. 

6.3. M a c r o s c o p i c  Dispers ion Re la t ions  

The dispersion relation for the spin diffusion mode has been given in Eq. 
(6.6), and has a very simple form. The shear modes in a simple Fermi 
superfluid obey a similar dispersion relation. Let us first decompose the 
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momentum density J and the normal fluid velocity v, into their transverse and 
longitudinal parts. The longitudinal parts are defined by 

JII = q(q 'J)  and v,i L = ~(~-v,) (6.18) 

where ~ = q/lq[, and the transverse parts are defined by 

J• = J - JH = p,v.• and v,• = v, - v,i I (6.19) 

The superfluid velocity is completely longitudinal since it is directed along q. 
There are several good references r which discuss the derivation of the 
linearized hydrodynamic equations for an isotropic superfluid, so we will only 
quote the results here. The transverse velocity obeys the equation 

ip.  ~ 0v.• t)/Ot = -iq2r/v,z(q, t) (6.20) 

where ~/ is the coefficient of shear viscosity (first viscosity), and p0  is the 
equilibrium normal fluid density. The dispersion relation for the shear modes 
takes the form 

co = - i q2~l/p,~ (6.21) 

Thus the shear modes are completely damped. 
There are four equations which govern the propagation of the longitu- 

dinal modes. The continuity equation for total particle density is given by 

i Op(q, t ) /~t  = qJil(q, t) (6.22) 

The equation for the superfluid velocity is given by 

i c3vs( q, t ) /~t  = q fi/~(q, t) - iqZ{~3[Jil(q,  t) - p~ ll(q, t)] 

+ f4v, i I (q, t)} (6.23) 

where pO is the total mass density of the equilibrium system, and f3 and f4 are 
second viscosities. The equation for the longitudinal part of the momentum 
density is given by 

i 0Jl[(q, t ) /~t  = q fiP(q, t) - ig2(~tl + (2 - P~ - iqe f tJ I l (q ,  t) (6.24) 

where fiP(q, t) denotes a fluctuation in the hydrostatic pressure and ~1 and fz 
are second viscosities. The equation for entropy density is 

iP o ~ + i~ o ~p(q, t) . K 2 Ot - p ~ 1 7 6  ll(q, t) - t ~ - q  f iT(q ,  t) (6.25) 

where Kis the coefficient of thermal conductivity, •o is the equilibrium specific 
entropy, o(q, t) denotes a fluctuation in the specific entropy, T o is the 
equilibrium temperature, and fiT(q, t) denotes a fluctuation in temperature. 

In order to find the normal mode frequencies of the longitudinal modes, 
we must close Eqs. (6.22)-(6.25). If we choose density, temperature, and the 
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normal and superfluid velocities as our independent variables, we can Fourier 
transform the time dependence of  Eqs. (6.22) and write them in the form 

co 6p - qp O 6v, - qps ~ 6vs = 0 (6.26) 

1 
\ep/~ L\MJT J 

-- (ps~ + iqZps~ c~v s = 0 (6.27) 

/oP5 /oP5  ~ 

_ (p~O09 + iq2pO~x ) 6v s = 0 (6.28) 

[ [oo 1 p C v  , t K  09 ,O,Oq v. o (6.29) 09 s~ + \ a . j ~ A  ~ -  + - = 

where Cv ~ = T~ ~ 6p = p(q, 09), 6T  = T(q, 09), 6v s = vs(q, co), and 6G 
= v, jl(q, 09). Equations (6.26) (6.29) form a closed set of equations from 
which we can, in principle, obtain the dispersion relations for the normal 
mode frequencies. 

The dispersion relation for a nondissipative superfluid takes a fairly 
simple form. If we set the transport coefficients equal to zero in Eqs. (6.26)- 
(6.29), we obtain the following equation for normal mode frequencies: 

0 4 - -  q2092(Cs2 A7 /tiT 2) q- q4CT2bl T = 0 (6.30) 

where c~ is the speed of adiabatic first sound 

c~ = (~P/Op)s ~ (6.31) 

cr is the speed of isothermal first sound 

CT 2 = (aP/ep)T ~ (6.32) 

and u T is the speed of second sound when G e = cr e, 

u Z = p o(oo)2TO/CvOpO (6.33) 

Thus, for a nondissipative superfluid, there are four undamped longitudinal 
modes, two first-sodnd modes with frequency 

~ [  ( 4 ( c f  - c ~ ) u 2 " ~ 1 / ~  (6.34) 
co~ 2 = G 2 +UT 2 + ( G  2 - u T  2) 1 -- (G 2 ur2) 2 ) _] 

and two second-sound modes with frequency 

09r 2 =  G 2 + u ~  2 - ( G  2 - u T  2) 1 -  (G 2 u ~  ~ ] j (6.35) 
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Note that if Cr ~ Cs, then co s = +_qc~ and cot = +_qur. 
If we retain the contributions from the transport coefficients in Eqs. 

(6.26) (6.29), we obtain a far more complicated quartic equation for the 
longitudinal mode frequencies. We will not discuss its solution here. Some 
approximate solutions have been given in Refs. 9-1l. 

7. C O N C L U D I N G  R E M A R K S  

In the previous sections, we have obtained closed, decoupled, kinetic 
equations for the bogolon spin density and total bogolon density of an 
isotropic Fermi superfluid, and we have shown that these equations yield the 
usual hydrodynamic equations for an isotropic Fermi superfluid. In a 
subsequent paper, we will obtain approximate solutions to the linearized 
kinetic equations for the case of long-wavelength inhomogeneities and long 
time. In so doing we will obtain microscopic expressions for the amplitudes 
and dispersion relations for the spin diffusion mode, the shear modes, and the 
longitudinal modes directly from the kinetic equations without having to 
introduce the hydrodynamic equations. Our expressions for all the modes will 
include damping effects due to transport processes. 
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